The Spectral Dimension of Arctic Outgoing Longwave Radiation and Greenhouse Efficiency Trends from 2003 to 2016

Colten Peterson¹, Xiuhong Chen¹, Qing Yue², Xianglei Huang¹

¹University of Michigan-Ann Arbor: Climate and Space Sciences and Engineering Dept.

²Jet Propulsion Laboratory: California Institute of Technology

Manuscript Under Revision

Acknowledgements: NASA Terra/Aqua/S-NPP and CERES programs

Radiative Responses

LW feedback processes

Radiative Responses

- LW feedback processes
- Outgoing LW radiation
- Surface energy budget

Radiative Responses

- LW feedback processes
- Outgoing LW radiation
- Surface energy budget
- Greenhouse effect (H₂O vapor, sea ice loss)

Radiative Responses

- LW feedback processes
- Outgoing LW radiation
- Surface energy budget
- Greenhouse effect (H₂O vapor, sea ice loss)

Defining Greenhouse Efficiency

GHE(v) =
$$\frac{F_S^{\uparrow}(V) - OLR(V)}{F_S^{\uparrow}(V)}$$

As GHE \rightarrow 1, stronger greenhouse efficiency

Radiative Responses

- LW feedback processes
- Outgoing LW radiation
- Surface energy budget
- Greenhouse effect (H₂O vapor, sea ice loss)

Defining Greenhouse Efficiency

GHE(v) =
$$\frac{F_S^{\uparrow}(V) - OLR(V)}{F_S^{\uparrow}(V)}$$

As GHE \rightarrow 1, stronger greenhouse efficiency

Far-Infrared

- Composes > 60% of Arctic OLR
 - "dirty window" (400-600 cm⁻¹)

OLR and GHE through a Spectral Lens

Why use spectral fluxes?

- Identify channels that are contributing to trends in broadband OLR/GHE
- Provides insight into atmosphere and surface changes

AIRS/CERES Spectral OLR Dataset

- Atmospheric IR Sounder (AIRS)
- Spectral range:
 - > 10-2000 cm⁻¹ (10 cm⁻¹ res.)
- Estimates of far-IR spectral flux
 [W/m²/10cm⁻¹]
- Coverage:
 - Global all-sky and clear-sky
 - 2°x2.5° (lat,lon) grids

1. What Arctic environmental changes have occurred from 2003-2016?

- Linear trends of zonal/monthly mean AIRS L3 T_s, Q_{H2O}, T_{atm} retrievals
- Seasonal Emphasis: March, July, September

1. What Arctic environmental changes have occurred from 2003-2016?

- Linear trends of zonal/monthly mean AIRS L3 T_s, Q_{H2O}, T_{atm} retrievals
- Seasonal Emphasis: March, July, September

2. Arctic Spectral OLR/GHE trends ("Observed")

- ❖ AIRS/CERES Spectral OLR
- Spectral GHE (AIR L3 derived F_s^{\uparrow})

GHE(v) =
$$\frac{F_s^{\uparrow}(\mathbf{V}) - OLR(\mathbf{V})}{F_s^{\uparrow}(\mathbf{V})}$$

1. What Arctic environmental changes have occurred from 2003-2016?

- Linear trends of zonal/monthly mean AIRS L3 T_s, Q_{H2O}, T_{atm} retrievals
- Seasonal Emphasis: March, July, September

2. Arctic Spectral OLR/GHE trends ("Observed")

- AIRS/CERES Spectral OLR
- \Leftrightarrow Spectral GHE (AIRS L3 derived F_S^{\uparrow})

GHE(v) =
$$\frac{F_S^{\uparrow}(V) - OLR(V)}{F_S^{\uparrow}(V)}$$

3. Can we simulate OLR/GHE trends?

- AIRS L3 Radiative transfer model (PCRTM: *Liu et al., 2006*)
- Simulator package from *Chen et al., 2013*

1. What Arctic environmental changes have occurred from 2003-2016?

- Linear trends of zonal/monthly mean AIRS L3 T_s, Q_{H2O}, T_{atm} retrievals
- Seasonal Emphasis: March, July, September

2. Arctic Spectral OLR/GHE trends ("Observed")

- AIRS/CERES Spectral OLR
- \Leftrightarrow Spectral GHE (AIRS L3 derived F_S^{\uparrow})

GHE(v) =
$$\frac{F_S^{\uparrow}(V) - OLR(V)}{F_S^{\uparrow}(V)}$$

3. Can we simulate OLR/GHE trends?

- AIRS L3 Radiative transfer model (PCRTM: Liu et al., 2006)
- Simulator package from Chen et al., 2013

4. Sensitivity Analyses (Connect geophysical variable trends to OLR/GHE trends)

- Vary one L3 variable at a time
- Compute OLR and GHE trends due to a particular variable

Broadband OLR Comparisons: Spectral Product vs. CERES SSF Edition4

AIRS L3 Retrieval Trends Analysis

- Positive trends in all months
- Springtime
 warming
 consistent with
 previous studies
- March shows widespread and significant changes

- Positive trends in all months
- Springtime
 warming
 consistent with
 previous studies
- March shows widespread and significant changes

- Positive trends in all months
- Springtime warming consistent with previous studies
- March shows widespread and significant changes

- Positive trends in all months
- Springtime
 warming
 consistent with
 previous studies
- March shows widespread and significant changes

1. Emphasis on March

- Clear-Sky Spectral OLR and GHE Trends
- Sensitivity Simulations

1. Emphasis on March

- Clear-Sky Spectral OLR and GHE Trends
- Sensitivity Simulations

2. Inter-seasonal Comparison

- ❖ The Nuances of Q_{H2O} Radiative Effects
- Utility of spectral fluxes

March OLR Trends: Increases in Window Regions

March OLR Trends: Increases in Window Regions

March Greenhouse Efficiency Trends

March GHE Trends: OLR & F_s^{\uparrow} Compete

- OLR and GHE trend patterns are distinct
- Positive trends across H₂O bands
- Changes in OLR and F_s^{\uparrow} compete

d(GHE)/dt is positive if:
$$\frac{d(OLR)/dt}{OLR} < \frac{d(F_s^{\uparrow})/dt}{F_s^{\uparrow}}$$

March Sensitivity Analysis

OLR/GHE Trends
$$\leftarrow$$
 T_s , Q_{H2O} , T_{atm}

- 1. T_s dominates OLR and GHE trends (March, July, Sep)
 - 2. Other variables contribute to far-IR OLR increase

- 1. T_s dominates OLR and GHE trends (March, July, Sep)
 - Other variables contribute to far-IR OLR increase

- 1. T_s dominates OLR and GHE trends (March, July, Sep)
 - Other variables contribute to far-IR OLR increase

March T_{atm} Impacts: Far-IR Emission and a Warming Troposphere

Simulated OLR Trends (T_{atm} Only)

March T_{atm} Impacts: Far-IR Emission and a Warming Troposphere

Simulated OLR Trends (T_{atm} Only)

- **Key Points:**
- 1. T_s dominates OLR and GHE trends (March, July, Sep)
 - Other variables contribute to far-IR OLR increase

Seasonal Differences of the Humidity-OLR Trend Relationship

OLR changes depend on the seasonality & pressure level of Q changes

OLR changes depend on the seasonality & pressure level of Q changes

OLR changes depend on the seasonality & pressure level of Q changes

OLR changes depend on the seasonality & pressure level of Q changes

OLR changes depend on the seasonality & pressure level of Q changes

Conclusions

1. Arctic is shifting to a warmer, wetter state

Increasing surface temperatures, humidity, and tropospheric temperatures

2. OLR and GHE trends have distinct features

Across LW frequencies, latitudinal zones, seasons

3. Surface Temperature dominates OLR and GHE trends

- Important in the context of Arctic amplification
- Surface warming causes both OLR and GHE to increase!

4. Spectral dimension offers insight for the Arctic

- Supplement broadband measurements
- Attribute radiative energy budget changes
- Far-IR can peer deeper into Arctic atmosphere

Future Opportunities: (1) Apply methods to a spectral feedback study (2) Climate change detection and attribution

Supplementary Figures

% of Grid Boxes with No Clr-sky CERES SSF

Spectral OLR Trends

Spectral GHE Trends

July Sensitivity Analysis

September Sensitivity Analysis

AIRS-CERES Spectral OLR Algorithm Details

$$F_{v} = \overline{F}_{v} + \sum_{j=1}^{N} e_{j} \phi_{v}^{j}$$
 $\mathbf{F} - \overline{\mathbf{F}} pprox \left[\phi^{1}, \phi^{2}, \dots, \phi^{M}\right] \begin{bmatrix} e_{1} \\ e_{2} \\ \dots \\ e_{M} \end{bmatrix} = \mathbf{\Phi} e$

$$F_{\textit{AIRS}} - \overline{F}_{\textit{AIRS}} \approx \Phi_{\textit{AIRS}} e$$

99.99% of variance can be explained by the first 20 or even less PCs

Huang, X., W. Yang, N. G. Loeb, and V. Ramaswamy (2008), Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: Clear sky over the tropical oceans, J. Geophys.

Res., 113, D09110,

doi:10.1029/2007JD009219

PCRTM Basics

- Ensemble of atmospheric profiles used to generate radiance spectra
- Matrix formed with N spectra and M channel radiances
- SVD performed to retrieved PCs (orthogonal basis vectors)
 - Compression of spectral information
 - ~10² PCs needed
 - PCs stored in forward model
- Linear combination of PC scores (Y_i) and PCs (U_i) generate channel radiances

$$\vec{R}^{ch} = \sum_{i=1}^{N_{PC}} Y_i \vec{U}_i + \vec{\varepsilon} = \sum_{i=1}^{N_{PC}} \left(\sum_{j=1}^{N_{mono}} a_j R_j^{mono} \right) \vec{U}_i + \vec{\varepsilon}$$

Correlation function used to select frequencies for R^{mono} computation

Synthetic Spectral Flux Calculations

- AIRS Level 3 Retrievals
 - Day/night monthly mean profiles
 - Gridded at 1deg x 1deg
 - T_{atm} is reported at 24 levels (1000hPa 1hPa)
 - Q is reported at 12 levels (1000-100hPa)
- PCRTM produces spectra in compressed PC score format
- Spectrum generated at 1cm⁻¹ intervals using PCs and scores
- Summed to 10cm⁻¹
- Average day/night to get monthly mean